Multiple analogues of binomial coefficients and families of related special numbers
نویسنده
چکیده
Multiple qt-binomial coefficients and multiple analogues of several celebrated families of related special numbers are constructed in this paper. These higher dimensional generalizations include the first and the second kind of qt-Stirling numbers, qt-Bell numbers, qt-Bernoulli numbers, qt-Catalan numbers and the qt-Fibonacci numbers. Certain significant applications are also studied including two discrete probability measures on the set of all integer partitions.
منابع مشابه
First Remark on a Ζ-analogue of the Stirling Numbers
The so-called ζ-analogues of the Stirling numbers of the first and second kind are considered. These numbers cover ordinary binomial and Gaussian coefficients, p, qStirling numbers and other combinatorial numbers studied with the help of object selection, Ferrers diagrams and rook theory. Our generalization includes these and now also the p, q-binomial coefficients. This special subfamily of F ...
متن کاملOn P,q-binomial Coefficients
In this paper, we develop the theory of a p, q-analogue of the binomial coefficients. Some properties and identities parallel to those of the usual and q-binomial coefficients will be established including the triangular, vertical, and the horizontal recurrence relations, horizontal generating function, and the orthogonality and inverse relations. The construction and derivation of these result...
متن کاملBernstein Basis Functions Related to Combinatorial Sums Involving Binomial Coefficients and Special Numbers
By using generating functions, which contained alternative forms, we derive identities, some new and old, for the Bernstein basis functions. Integrating these identities, we also derive combinatorial sums involving binomial coefficients. We give relations between these combinatorial sums and generating functions for special numbers, we investigate relations related to finite sums of the powers ...
متن کاملJacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients
In this paper, we study congruences on sums of products of binomial coefficients that can be proved by using properties of the Jacobi polynomials. We give special attention to polynomial congruences containing Catalan numbers, second-order Catalan numbers, the sequence Sn = ( 3n)( 3n 2n) 2( n )(2n+1) , and the binomial coefficients ( 3n n )
متن کاملOn Multiple Sums of Products of Lucas Numbers
This paper studies some sums of products of the Lucas numbers. They are a generalization of the sums of the Lucas numbers, which were studied another authors. These sums are related to the denominator of the generating function of the k-th powers of the Fibonacci numbers. We considered a special case for an even positive integer k in the previous paper and now we generalize this result to an ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010